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The efficiency of energy transduction in a temporally asymmetric rocked ratchet is studied. Time asymmetry
favors current in one direction and suppresses it in the opposite direction due to which large efficiency,50%
is readily obtained. The spatial asymmetry in the potential together with system inhomogeneity may help in
further enhancing the efficiency. Fine tuning of system parameters considered leads to multiple current rever-
sals even in the adiabatic regime.
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I. INTRODUCTION

Brownian rectifiers or ratchets are devices that convert
nonequilibrium fluctuations into useful work in the presence
of load. Several physical models[1–4] have been proposed
to understand the nature of currents and their possible rever-
sals with applications in nanoparticle separation devices[4].
The possibility of enhancement of efficiency with which
these Brownian rectifiers convert the nonequilibrium fluctua-
tions into useful work has generated much interest in this
field. This, in turn, has led to the emergence of a separate
subfield—stochastic energetics—on its own right[5,6]. Us-
ing this formalism one can readily establish the compatibility
between Langevin or Fokker–Planck formalism with the
laws of thermodymanics thereby providing a tool to study
systems far from equilibrium. With this framework, one can
calculate various physical quantities such as efficiency of
energy transduction[7], energy dissipation(hysteresis loss),
entropy(entropy production) [8], etc.

Most of the studies yield low efficiencies, in the subper-
centage range, in various types of ratchets. This is due to the
intrinsic irreversibility associated with ratchet operation.
Only fine tuning of parameters can lead to a large efficiency,
the regime of parameters, however, being very narrow[9].
Recently Makhnovskiiet al. [10] constructed a special type
of flashing ratchet with two asymmetric double-well
periodic-potential states displaced by half a period. Such
flashing ratchet models were found to be highly efficient
with efficiency an order of magnitude higher than in earlier
models[5–7,11]. The basic idea behind this enhanced effi-
ciency is that even for diffusive Brownian motion the choice
of appropriate potential profile ensures suppression of back-
ward motion and hence reduction in the accompanying dis-
sipation.

In the present work, we study the motion of a particle in a
rocking ratchet rocked purposefully as to favor current in one
direction but to suppress motion in the opposite direction.

This is in similar spirit as in case of flashing ratchets pro-
posed by Makhnovskiiet al. [10]. This is accomplished by
applying temporally asymmetric but unbiased periodic forc-
ings [12–14]. Interestingly, such choice of forcings help in
obtaining rectified currents with high efficiency even for spa-
tially symmetric periodic potentials. Still higher efficiency is
obtained with asymmetric potentials. The range of param-
eters of operation of such ratchets is quite wide sustaining
large loads. In addition, frictional inhomogeneity may further
enhance the efficiency. Our study is closely related to Ref.
[14]. However, there is an error in the calculation of input
energy in Ref.[14] which we have rectified[15]. Due to this
our results cannot be compared with that in Ref.[14]. We
also see multiple current reversals in the full parameter space
of operation even in the adiabatic regime. However, multiple
current reversals require fine tuning of the parameters.

II. MODEL

The Brownian motion of a particle in an inhomogeneous
medium is described by the Langevin equation[16]

q̇ = −
V8sqd − Fstd

gsqd
−

kBTg8sqd
2fgsqdg2 +Î kBT

gsqd
jstd, s1d

wherejstd is a randomly fluctuating Gaussian thermal noise
with zero mean and correlation,kjstdjst8dl=2dst− t8d. It may
be noted that Eq.(1) has been obtained earlier via a micro-
scopic treatment of a system coupled to a thermal bath[16].
The above equation involves a multiplicative noise with an
additional temperature dependent drift term. This additional
drift term is essential in order for the system to approach the
correct thermal equilibrium state in the absence of forcing
[16,17]. The periodic potential Vsqd=−V0 sinsqd
−sm /4dsins2qd. The parameterms−1,m,1d characterizes
the degree of asymmetry in the potential. The friction coef-
ficient gsqd=g0(1−l sinsq+fd), with 0øl,1 and f the
phase difference.Fstd is the externally applied periodic driv-
ing force. Following Stratonovich interpretation[18] the cor-
responding Fokker-Planck equation[19] is given by
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]Psq,td
]t

=
]

]q

1

gsqdFkBT
]Psq,td

]q
+ fV8sqd − FstdgPsq,tdG .

s2d

Since we are interested in the adiabatic limit, we first obtain
an expression for the probability current densityj in the pres-
ence of a constant external forceF0. The expression is given
by [19]

j =

1 − expF− 2pF0

kBT
G

E
0

2p

dyI−syd
, s3d

whereI−syd is given by

I−syd = expF− Vsyd + F0y

kBT
G

E
y

y+2p

dx gsxdexpFVsxd − F0x

kBT
G . s4d

It may be noted that form=0, jsF0dÞ−js−F0d for fÞ0,p.
This asymmetry ensures rectification of current for the
rocked ratchet even in the presence of spatially symmetric
potential. We assume thatFstd changes slow enough, i.e., its
frequency is smaller than any other frequency related to the
relaxation rate in the problem such that the system is in a
steady state at each instant of time.

We consider time asymmetric ratchets with a zero-mean
periodic driving force[12] given by

Fstd =
1 + e

1 − e
F0, Snt ø t , nt +

1

2
ts1 − edD,

= − F0, Snt +
1

2
ts1 − ed , t ø sn + 1dtD . s5d

Here, the parametere signifies the temporal asymmetry in
the periodic forcing,t is the period of the driving forceFstd
andn=0,1,2…. is an integer. For this forcing in the adiabatic
limit, the expression for time averaged current is[7,12]

k jl = j+ + j−, s6d

with

j+ =
1

2
s1 − ed jS1 + e

1 − e
F0D ,

j− =
1

2
s1 + ed js− F0d s7d

where j+ is the current fraction in the positive direction over
a fraction of time periods1−ed /2 of t when the external
driving force field iss1+e /1−edF0 and j− is the current frac-
tion over the time periods1+ed /2 of t when the external
driving force field is −F0. The input energyEin per unit time
is given by[7]

Ein = F0FS1 + e

1 − e
D j+ − j−G . s8d

To calculate efficiency a loadL is applied against the direc-
tion of current with overall potentialVsqd=−fV0 sinsqd
+sm /4dsins2qd−qLg. The current flows against the load as
long as the load is less than the stopping forceLs beyond
which the current is in the same direction as that of the load.
Thus, in the operating range of the load 0,L,Ls, the
Brownian particles move in the direction opposite to the load
thereby storing energy. The average work done over a period
is given by

Eout = Lf j+ + j−g. s9d

The thermodynamic efficiency of energy transduction is[5,6]

h =
Lf j+ + j−g

F0FS1 + e

1 − e
D j+ − j−G . s10d

In our present discussion, all the physical quantities are taken
in dimensionless units. In the following section, we discuss
the results of our calculation. In order to evaluate currents,
we use the method of Gaussian quadrature[20].

III. RESULTS AND DISCUSSIONS

To begin with, we consider a homogeneous system in the
presence of spatially symmetric potential. In this case, uni-
directional currents arise solely due to temporally asymmet-
ric driving field (with mean zero) which is mainly empha-
sized in this work.

In Fig. 1, we plot efficiency as a function of load in the
presence of temporal asymmetrye for F0=0.1 andT=0.1.
For finite e, current against the load is obtained for load
L,Ls. The stopping forceLs is an increasing function ofe.
As will be discussed later(in Fig. 2), the total current in-
creases ase increases and hence larger load is necessary to

FIG. 1. Efficiency vs load for various values ofe with fixed
F0=0.1, m=0, andl=0.
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reverse the direction of current. For a givene, the efficiency
slowly increases with load, attains a maximum and then de-
creases rapidly(Fig. 1). The locus of peak values corre-
sponding to differente values(with appropriate loadL) is
found to have a nonmonotonous behavior with the maximum
s,0.29d being at arounde=0.8 corresponding to a load of
L=0.258. It may be emphasized that an efficiency above the
subpercentage value is readily obtained here as compared to
the reported values in other ratchet models[7]. Moreover,
this ratchet system can sustain larger operation range of load
against which useful work is done by pumping particles up-
hill.

The existence of the optimal value ofe can be understood
as follows. At low temperatures, withkBT much less thanV0,
the modulation amplitude of the periodic symmetric potential
(which is taken to be unity in our present problem as all the
energies are scaled with respect toV0), the significant current
arises only when the bias field is greater than the critical field
Fc, which should be greater than one for our case[19]. It
may be noted thatj+ and j− are always positive and negative,
respectively. IfF0,1, the current fraction in the negative
direction is very small(blocking of current). The significant
current fraction in the positive direction arise only when
s1+e /1−edF0.1. In this situation, the barriers for motion in
the forward direction disappears. For fixedF0, the above
condition determines the critical value ofe, i.e., ec. Thus,
when e.ec, the barrier to forward motion disappears and
hencej+@ j− leading to

h =
Ls1 − ed
F0s1 + ed

. s11d

It may be noted that ase→1, h→0 from the positive side.
To generate useful work in the adiabatic domain the load has
to be smaller than the largest applied fields1+e /1−edF0 in
the positive direction which guarantees thath,1. In the
opposite limit ofe→0, j+,−j− (in the presence of infinitesi-
mal load) and hence no useful work can be obtainedsEout

,0d. These two limiting cases explain the existence of an
optimum value fore. In the limit kBT!V0 and F0!1, this
optimal valueec can be found from the approximate condi-
tion s1+ec/1−ecdF0=1. For the present case of Fig. 1 with
F0=0.1, the above expression givesec=0.82 and correspond-
ing efficiency as,0.26 in reasonable agreement with that in
figure. The critical value ofec depends onF0 and it decreases
with increase inF0.

To make the above discussion transparent in Fig. 2, we
plot efficiency as a function ofe for two values of F0;
namely,F0=0.1 and 0.5. The largerF0 value, i.e.,F0=0.5 is
taken so as to observe efficiency even at lowere values. It is
clear that efficiency shows a nonmonotonous behavior withe
as discussed above andec follows the expected behavior with
respect to increase inF0. The inset showsj+ and j− as a
function of e for the caseF0=0.5. The suppression of back-
ward current fraction is obvious in this figure. It is this sup-
pression that leads to larger efficiency consistent with the
observations made in[10]. The forward fraction of current
increases monotonically withe. Plots of j+ and k jl are
merged together on the scale used in the plot.

The useful workEout and the input energyEin are shown
in Fig. 3 for two representative values ofe, namely,e=0.8
ande=0.4 as a function of load. The input energy decreases
to a minimum value for a load larger thanLs. This minimum
corresponds to a value of about 2.497310−5 for a load of
0.399 whene=0.8. Moreover, it remains positive, as ex-
pected, over the entire range. The output energy shows a
peak with load in the region where the input energy is mo-
notonously decreasing. It then becomes negative forL.Ls
as anticipated. This qualitative behavior of input energy
shown in Fig. 3 is similar to that in Ref.[10] for the flashing

FIG. 2. Efficiency vse for F0=0.1 and 0.5 forT=0.1 with fixed
m=0 andl=0. Inset showsj+, j− and k jl for F0=0.5 with other
parameters being the same.

FIG. 3. Input and output energy vs load fore=0.8 andF0=0.1,
ande=0.4 andF0=0.5 with fixedm=0, l=0, andT=0.1. The nega-
tive values of the output energy are not shown. The output curve is
blown up 100 and 10 times, respectively, to scale with the input
energy curve values. Inset shows the currents,j+, j− and k jl for e
=0.8 andF0=0.1 as a function of load.
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ratchet. Needless to say, that finite input energy is always
required to maintain the nonequilibrium steady state.

The behavior of input energy can be explained from the
nature of current fractionsj+ and j− which is shown in the
inset of Fig. 3. Up to the point where the loadL,0.26, the
current in the backward direction, i.e.,j− is negligible and
hence the contribution to input energy is solely due to the
current fraction in the positive direction. Hence, there is a
monotonic decrease ofEin in accordance withj+ with in-
creasing load as is obvious from the equation for input en-
ergy, Eq.(8), which is nowEin,F0(s1+ed / s1−ed) j+. Up to
this load, the net unidirectional currentk jl coincides withj+.
With a still further increase in load, the current fraction in the
backward direction(with negative magnitude) starts increas-
ing and at a load ofL,0.343 the net unidirectional current,
k jl, reverses sign. Beyond this region, the major contribution
to k jl comes fromj−. Sincej− is negative it follows from Eq.
(8) that input energy remains positive and increases further.
Again beyond a certain value of load,j+ also reverses its sign
(not shown in Fig. 3). However, asu j−u. u j+u, it follows that
input energy is positive. Thus, a minima in the input energy
is naturally expected with increasing load due to the balance
between the current fraction in the positive and negative di-
rection.

In Fig. 4, we plot efficiency as a function ofF0 for dif-
ferent values ofe. All other parameters are mentioned in
figure caption. In the regimekBT!V0, the efficiency shows a
peaking behavior as a function ofF0. In the limit F0→0,
there exist barriers to motion in both directions due to which
transitions out of the well in either direction are suppressed
and hence both net current and efficiency tends to zero.
Again, whenF0 becomes large such that barriers to motion
in either direction disappear, the net current again vanishes
and the efficiency tends to zero. From the nature ofj+, j−,
and k jl shown in the inset the above mentioned points be-
come more clear. The peak in the efficiency shifts to lower

F0 values with increase ine as anticipated. The observed
efficiency values are also quite large.

So far, our discussion was restricted to the case of spa-
tially symmetric potential. It is the temporally asymmetric
fluctuations(with zero mean) alone that lead to unidirec-
tional current with large efficiency. In the following, we dis-
cuss briefly how the addition of asymmetry in the potential
and system inhomogeniety affect the system efficiency and
currents. In Fig. 5, we consider the periodic potentialVsqd to
be spatially asymmetric together with a temporally asymmet-
ric external driving force field. The potential asymmetry en-
hances the efficiency of energy transduction as well as wid-
ens the range of load. This is due to the fact that foreÞ0, the
presence of asymmetric parameterms.0d further reduces the
potential barrier for forward motion and enhances the barrier
for backward motion. Moreover, as can be seen from the
inset, one can get finite current even whene=0 with finite
stopping forceLs in contrast to the symmetric potential case.
From Figs. 1 and 5, it is clear that the temporally asymmetric
forces not only enhance the efficiency of energy transduction
but also widen the operation range of load against which the
ratchet system works. Specifically, we would like to empha-
size that the spatially asymmetric potential enhances the en-
ergy transduction because we have chosenm.0, i.e., we
apply the largest force to the soft direction of the potential.
Obviously, the opposite results hold whenm,0.

In Fig. 6, we plot efficiency as a function ofT for various
e values in the presence of potential asymmetrysm.0d. The
efficiency decreases with temperature. The efficiency ap-
proaches the valuefLs1−edg / fF0s1+edg in the low-
temperature limit, Eq.(11). This gives an efficiency value of
0.275, 0.385, and 0.488 for cases(i), (ii ), and (iii ), respec-
tively, of Fig. 6. These values are consistent with that ob-
tained in Fig. 6. The relevant physical parameters chosen for
optimal efficiency are mentioned in the caption. From the
inset, it should be noted that the current peaks as a function

FIG. 4. Efficiency vsF0 for e=0.9, 0.8, and 0.6 with fixedm
=0, l=0, L=0.4, andT=0.1.

FIG. 5. Efficiency vs load for variouse with fixed F0=0.1, T
=0.1, andl=0. Inset shows efficiency vs load for the casee=0 and
m=1.

KRISHNAN, MAHATO, AND JAYANNAVAR PHYSICAL REVIEW E 70, 021102(2004)

021102-4



of temperature yet efficiency decreases monotonically. This
implies that thermal fluctuation does not favor energy trans-
duction in the case wherem.0. We have verified separately
that u j−/ j+u is a monotonically increasing function of tem-
perature. This fact alone[7] along with Eq.(10) will lead to
a conclusion[7] that efficiency decreases with rise in tem-
perature. In the presence of system inhomogeniety by fine
tuning the parameters, we have observed a peak in efficiency
as a function of temperature as is observed in[7,21]. The
observed efficiency values are in the subpercentage regime.
Moreover, peaking of efficiency as a function of temperature
can be readily observed when the system exhibits multiple
current reversals[21]. These results are not presented here.

Next, we present the effect of frictional inhomogeneity
(g=gsqd ;lÞ0). In Fig. 7, we plot the efficiency as a func-
tion of the phase difference between the potential and the
friction coefficientgsqd for a typical case. We observe that
the inclusion of this parameterl further increases the effi-
ciency in a range off depending on other parameter values.
It is worth mentioning that for inhomogeneous systems the
efficiency peaks with temperature in a limited range of pa-
rameters. With frictional inhomogeneity, the range of tem-
peratures in which one can obtain output current with finite
efficiency is extended to a large temperature where the con-
tribution of l dominates over other parameters.

In Fig. 8, we show that by properly choosing the param-
eters we can obtain multiple current reversals as a function of
temperature. It should be noted that such reversals are not
possible in the homogeneous case in the adiabatic regime
[22]. The inset of Fig. 8 shows current as a function of indi-
vidual parametersse ,m ,ld. The plots indicate that individual
parameters cannot separately bring about current reversals.
However, the possibility of current reversals arises due to the
combined effect of the three asymmetry parameters consid-
ered. We have also observed more number of current rever-
sals than shown in Fig. 8 by fine tuning the parameters.

IV. CONCLUSIONS

Using the method of stochastic energetics, we have stud-
ied in detail the nature of efficiency, currents, and input en-
ergy for temporally asymmetric rocked ratchets. We have
considered different cases wherein potential is spatially sym-
metric or asymmetric and there is frictional inhomogeniety
in the medium. We find large efficiency for these rocking
ratchet systems, the origin of which can be traced to the
suppression of backward motion. The observed efficiency is
much higher than the earlier reported values even though the
ratchet operates in an intrinsically irreversible domain. The
temporal asymmetry parameter also helps in increasing the
range of load of operation of the ratchet.

FIG. 6. Efficiency vs temperature with fixedm=1 andl=0 for
(i) e=0.2, F0=0.8, andL=0.33, (ii ) e=0.4, F0=0.5, andL=0.45
and(iii ) e=0.8,F0=0.1, andL=0.44. Inset shows current as a func-
tion of temperature fore=0.8 andF0=0.1 in the absence of load.

FIG. 7. Efficiency vsf for e=0.8, m=1, andL=0.44 for (i) l
=0.0 and(ii ) l=0.9 with fixedF0=0.1 andT=0.1

FIG. 8. Current vs temperature curve showing two current re-
versals form=−1, l=0.9, ande=0.34 with f=1.005p, F0=0.3,
andL=0. Inset shows the current in the presence of lone asymmetry
parameterssl ,e ,md.
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It is worthwhile to explore whether or not, in the high
efficiency regime of these ratchet systems, the transport is
coherent. Noise-induced currents(transport) are always asso-
ciated with a dispersion or diffusion. When the diffusion is
large, then the quality of transport degrades and the coher-
ence in the unidirectional motion is lost. The coherent trans-
port (optimal transport) refers to the case of large mean ve-
locity at fairly small diffusion and is quantified by a
dimensionless Péclet number[23]. This study will be helpful
in finding the correlation, if any, between high efficiency and
transport coherence. This connection is yet to be explored.

We also observe multiple current reversals in the adiabatic
limit by the proper fine tuning of different parameters. These
reversals are attributed to inherent complex dynamics of the
system.
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